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Abstract

A theory of pump-probe spectroscopy is developed in which optical fields

drive two-photon Raman transitions between ground states of an ensemble of

three-level atoms. Effects related to the recoil the atoms undergo as a result

of their interactions with the fields are fully accounted for in this theory.

The linear absorption coefficient of a weak probe field in the presence of two

pump fields of arbitrary strength is calculated. For subrecoil cooled atoms,

the spectrum consists of eight absorption lines and eight emission lines. In the

limit that χ1 � χ2, where χ1 and χ2 are the Rabi frequencies of the two pump

fields, one recovers the absorption spectrum for a probe field interacting with

an effective two-level atom in the presence of a single pump field. However

when χ1 & χ2, new interference effects arise that allow one to selectively turn

on and off some of these recoil induced resonances.

I. INTRODUCTION

Recent advances in laser cooling, atom optics, and Bose-Einstein condensation have

underlined the role played by atomic recoil in atom-field interactions. A measure of the

importance of recoil effects is the recoil frequency, ω~k = ~k2/2M, associated with the

absorption, emission or scattering of radiation of wavelength λ = 2π/k by an atom of

mass M. Once this quantity becomes greater than or comparable to decay rates or Doppler

widths that characterize the spectral response of atoms, recoil can lead to new features in

absorption or emission line shapes. One class of such phenomena has been termed recoil-

induced resonances (RIR) [1-8], which occur when a weak probe and strong pump field

simultaneously drive a given atomic transition. Interesting in their own right, the RIR have

been used to determine the velocity distribution of laser-cooled atoms [7], as a probe of

Bose-Einstein condensates [9] [10], and in a feedback mechanism in stochastic cooling [11].

Related to the RIR is the so-called collective atomic recoil laser (CARL), which operates on
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similar principles but in a somewhat different parameter range [12]. Both the RIR and CARL

represent new diagnostic probes of cold-atom sysytems. Recently, Moore and Meystre [13]

proposed that CARL be used to entangle optical and matter fields, as well as to entangle

different modes of the condensate excited by the optical fields. Our discussion is limited

to situations in which the collective effects associated with CARL can be neglected. In

this paper, we combine RIR with ground state spectroscopy [14] to obtain qualitatively new

features in the probe absorption spectrum.

The scheme we adopt is based on the model developed in [14] involving Raman transi-

tions, but for which all effects associated with atomic recoil were ignored. In that work a

new type of interference was discovered, allowing one to selectively turn on and off certain

lines in the absorption-emission spectrum by controlling the ratio of the Rabi frequencies of

the two fields that comprise the two-photon pump field. Interference in a dressed state basis

occurs between pathways involving the probe field and each of the two pump fields. Since

the two pump fields impart different recoil momenta to the atoms, it is not at all obvious

that the interference persists when recoil splittings are resolved. Part of the motivation

for our calculation is to examine this question. In addition, we show that the interference

persists even if the pump fields are in quantized, Fock states.

The probe absorption spectrum consists of as many as eight absorption-emission doublets

which are fully resolvable if ωk > γ, where γ is some effective ground state lifetime. This

is in contrast to the RIR spectrum on dipole allowed optical transitions [1], where at most

one absorption emission doublet is resolvable if ωk < γe, where γe is an excited state decay

rate. One might question the need to increase the number of recoil doublets in the probe

spectrum, since a single doublet can be used to probe recoil effects. We show that the

additional recoil structure reflects interesting quantum dynamics of the combined atom-field

system, as well as providing some new applications.

In Sect. II, a model is developed for the interaction of the atoms with the pump fields;

dressed states of the atom plus pump fields are defined. In Sect. III, the interaction with the

probe field is introduced and the dressed state picture is used to obtain the probe absorption
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spectrum in the secular limit. In Sect. IV we discuss the results and possible applications.

Nonsecular contributions to the absorption coefficient are calculated in an Appendix.

II. EQUATIONS OF MOTION

The atom-field system is indicated schematically in Fig.1. Ground state levels |1 > and

|2 > are pumped incoherently with rates Λ1(p) and Λ2(p), respectively, and the population

of both states decay with rate γ. If states |1 > and |2 > represent stable ground states of

the atom, then the pumping rates and decay rate constitute a simple model for atoms that

enter and leave the interaction volume. The ground to excited state transition frequencies

are denoted by ωej (j = 1, 2). The pump fields 1 and 2, which constitute the two-photon

pump field, are denoted by the coupling constants g1 and g2, respectively. Pump field 1

couples only state |1 > and excited state |e >, while pump 2 couples only states |2 >

and |e >. The pump fields have frequencies Ω1 and Ω2, and propagation vectors k1 and

k2, respectively. In this section, equations are derived for the atom-pump field interaction,

neglecting the incoherent pumping and decay of the ground state levels. In the following

section, the interaction of the atoms with the probe field, Ep, which couples only states |1 >

and |e >, is incorporated into the calculation, as are the incoherent pumping rates Λ1(p)

and Λ2(p), and the ground state decay rate γ.

In contrast to [14] but as in [3], we use a quantized description of the pump fields. If the

pump field detunings,

∆2 = Ω2 − ωe2 ≈ ∆1 = Ω1 − ωe1 ≡ ∆, (2)

are sufficiently large such that |χ1,2/∆|2 � 1 and |γe/∆| � 1, where the χ1,2 are defined

below and γe is the excited state decay rate, it is possible to adiabatically eliminate the

excited state to arrive at an effective Hamiltonian involving only states |1 > and |2 > which

is of the form
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H = Ha +Hr +Har; (3a)

Ha =
∑

p

[
(~ω1 +

p2

2M
)|1,p >< 1,p|+ (~ω2 +

p2

2M
)|2,p >< 2,p|

]
; (3b)

Hr = ~Ω1a
†
1a1 + ~Ω2a

†
2a2; (3c)

Har =
∑

p

[
~
g1g∗2e

ik12·R

∆
|2,p >< 1,p|a†2a1 + ~

g2g∗1e
ik21·R

∆
|1,p >< 2,p|a†1a2

]
, (3d)

where Ha is the Hamiltonian for the atom in which the center-of-mass momentum p has

been quantized using periodic boundary conditions in a volume V (assuming that the atoms

are free and not subject to some trapping potential), Hr is the free field Hamiltonian for the

two pump fields, Har represents the interaction of the two-photon pump field with an atom,

in the rotating-wave approximation, and

kij = ki − kj.

Bare states, |j,p;n1, n2 >, are defined to be eigenstates of Ha+Hr, where j = 1, 2 labels the

internal state of the atom and n1 and n2 are the number of photons in pump fields 1 and 2,

respectively. A term in the Hamiltonian corresponding to the light shifts of the ground state

levels, Hls =
∑

p

[
~ |g1|2

∆
|1,p >< 1,p|a†1a1 + ~ |g2|2

∆
|2,p >< 2,p|a†2a2

]
, has been omitted in

Eq. (3a); such light shifts can be included by a redefinition of the ground state frequencies,

ω2 + |g2|2
∆

〈
a†2a2

〉
→ ω2 and ω1 + |g1|2

∆

〈
a†1a1

〉
→ ω1.

The matrix elements of the operator eik·R in the momentum-state basis are

< p|eik·R|p′ >=< p|p′ + ~k >= δp,p′+~k. (4)

This allows one to rewrite the interaction term as

Har =
∑

p

[
~
g1g∗2
∆
|2,p + ~k12 >< 1,p|a†2a1 + ~

g2g∗1
∆
|1,p >< 2,p + ~k12|a†1a2

]
. (6)

The Hamiltonian H results in an infinite ladder of decoupled two state manifolds (p, n1, n2)

involving the states |1,p;n1, n2 > and |2,p + ~k12;n1 − 1, n2 + 1 >. The Hamiltonian for

the manifold (p, n1, n2) is

H(p, n1, n2) = ε(p, n1, n2)I + ~

 −δ̃(p)/2 G∗

G δ̃(p)/2

 (7)
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where I is the identity matrix

G =
χ∗1χ2

∆
≡ |G|eiφd,

ε(p, n1, n2) = ~(n1Ω1 + n2Ω2) +
~
2

(ωp + ωp+~k12 + ω1 + ω2 + Ω2 − Ω1), (8)

δ̃(p) = δ12 − ω~k12 −
p · k12

M
;

δ12 = ∆1 −∆2 = (Ω1 −Ω2)− ω21,

~ωp = p2

2M
, and χ2 = g2

√
n2 + 1, χ1 = g1

√
n1.

The dressed states are defined to be the eigenstates of the matrix in Eq.(7), with energies

EB,A(p) = ε(p, n1, n2)± ~ωAB(p)

2
;

ωAB(p) =

√
4|G|2 + δ̃(p)2,

and associated eigenkets [15] |A0 >

|B0 >

 = T∗(p)

 |2,p + ~k12;n1 − 1, n2 + 1 >

|1,p;n1, n2 >

 (9)

where

T(p) =

 eiφd/2 cos [θ(p)] −e−iφd/2 sin [θ(p)]

eiφd/2 sin [θ(p)] e−iφd/2 cos [θ(p)]

 (10)

and

cos [θ(p)] =

[
1

2

(
1 +

δ̃(p)

ωAB(p)

)]1/2

. (12)

The value of θ(p) is restricted to the range 0 ≤ θ(p) ≤ π/4 for δ(p) ≥ 0 and π/4 ≤ θ(p) ≤

π/2 for δ̃(p) ≤ 0. For θ(p) ∼ 0 (δ̃(p) > 0 and δ̃(p)/|G| � 1), |A0 >∼ |2,p+~k12;n1−1, n2 +

1 > while for θ(p) ∼ π/2 (δ̃(p) < 0 and
∣∣∣δ̃(p)

∣∣∣ /|G| � 1), |B0 >∼ |2,p+~k12;n1−1, n2+1 >.
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III. PROBE FIELD ABSORPTION IN THE SECULAR LIMIT

The effect of the probe field is to induce transitions between states in different manifolds.

As is customary in dressed atom approaches, the probe is treated as a classical field,

E(R,t) =
1

2
ε̂Epe

i(kp·R−Ωpt) + c.c., (13)

where ε̂ is a unit polarization vector. For our problem, however, this choice represents

a hybrid approach, since two-quantum processes involving the probe field and either of the

pump fields mix classical and quantized fields. Although the probe field is treated classically,

its effect on the momentum of the states must be accounted for explicitly. If the probe field

detuning on the 1 → e transition is sufficiently large to be consistent with the adiabatic

elimination of the excited state, all transitions involving the probe occur via two-quantum

transitions involving the probe field and either of the pump fields. In the bare state basis,

starting from the (p, n1, n2) manifold, probe field absorption corresponds to transitions

|1,p;n1, n2 >→ |1,p + ~kp1;n1 + 1, n2 > or |1,p;n1, n2 >→ |2,p + ~kp2;n1, n2 + 1 >,

where the second photon is emitted into either the pump 1 or pump 2 modes, respectively.

Similarly, probe gain corresponds to transitions |1,p;n1, n2 >→ |1,p−~kp1;n1− 1, n2 > or

|2,p + ~k12;n1 − 1, n2 + 1 >→ |1,p− ~kp1;n1 − 1, n2 >. This is illustrated in Fig. 2(a).

This picture of probe field absorption or emission allows us to reach an important con-

clusion concerning interference between pathways involving both pump fields. The two

absorption processes shown in Fig. 2(a) involve different final states and do not interfere,

reinforcing the possibility mentioned in the Introduction that interference may be suppressed

when recoil is taken into account. However, both final states belong to the same manifold -

the (p+~kp1, n1 +1, n2) manifold. As such, when these states are dressed by the two-photon

pump field, each state in the final state manifold will be coupled to the initial state by two

separate pathways involving the probe field and each of the pump fields. This implies that

terms in the probe absorption depending on the simultaneous presence of both pump fields

will exhibit interference effects. In the case of probe gain, it is the initial states that differ,

but the overall conclusion remains unchanged.
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The dressed state approach provides a convenient and relatively easy method for obtain-

ing the probe absorption spectrum in the secular limit, where the frequency separation of

the dressed states in a given doublet is much larger than the ground state decay rate γ. [It

is assumed from this point onward that γe (χ1,2/∆)2 � γ, implying that the dressed states

decay with rate γ [3]]. One need calculate only the dressed state energies and the transition

matrix elements to obtain the spectrum. A more detailed treatment of the problem, allowing

one to calculate non-secular contributions, is presented in Appendix B.

It is straightforward to generalize the dressed states defined in the previous section

to include the two manifolds coupled to the initial manifold by the probe. The 0,

1, and 2 manifolds refer to (p, n1, n2) = {|1,p;n1, n2 >, |2,p + ~k12;n1 − 1, n2 + 1 >},

(p + ~kp1, n1 + 1, n2) = {|1,p + ~kp1;n1 + 1, n2 >, |2,p + ~(k12 + kp1);n1, n2 + 1 >} , and

(p − ~kp1, n1 − 1, n2) = {|1,p− ~kp1;n1 − 1, n2 >, |2,p + ~(k12 − kp1);n1 − 2, n2 + 1 >},

respectively. Taking the central energy of the initial manifold (p, n1, n2) arbitrarily equal to

zero, one finds that the dressed state energies are given by

E
(0)
A,B = ±1

2
~ω(0)

AB(p);

E(1)
A,B = ~ω10(p) ± 1

2
~ω(1)

AB(p); (14)

E
(2)
A,B = ~ω20(p) ± 1

2
~ω(2)

AB(p),

where

ω(i)
AB(p) =

√
4|G|2 + δi(p)2, (15)

δ0(p) = δ̃(p) = δ12 − ω~k12 −
p · k12

M
;

δ1(p) = δ̃(p + ~kp1) = δ12 − ω~k12 −
(p + ~kp1) · k12

M
; (16)

δ2(p) = δ̃(p− ~kp1) = δ12 − ω~k12 −
(p− ~kp1) · k12

M
,

~ω10(p) = ε(p + ~kp1, n1 + 1, n2)− ε(p, n1, n2) = ~
(

Ω1 + ω~kp1 +
kp1 · p
M

+
~kp1 · k12

2M

)
; (17a)

~ω20(p) = ε(p− ~kp1, n1 − 1, n2)− ε(p, n1, n2) = ~
(
−Ω1 + ω~kp1 −

kp1 · p
M

− ~kp1 · k12

2M

)
, (17b)
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and it has also been assumed that n1, n2 � 1 such that G(0) = g∗1g2

√
n1 (n2 + 1)/∆ ≈

G(1) = g∗1g2

√
(n1 + 1) (n2 + 1)/∆ ≈ G(2) = g∗1g2

√
(n1 − 1) (n2 + 1)/∆ ≡ G. The dressed

state angles are given by

cos [θi(p)] =

[
1

2

(
1 +

δi(p)

ω(i)
AB(p)

)]1/2

(19)

and dressed state kets are defined by |Ai >

|Bi >

 = T∗i (p)

 |2,p + ~ [k12−(−1)i (1− δi,0) kp1] ;n1 − 1− (−1)i (1− δi,0) , n2 + 1 >

|1,p−(−1)i (1− δi,0)~kp1;n1 − (−1)i (1− δi,0) , n2 >


(21)

where

Ti(p) =

 eiφd/2 cos [θi(p)] −e−iφd/2 sin [θi(p)]

eiφd/2 sin [θi(p)] e−iφd/2 cos [θi(p)]

 . (22)

The absorption coefficient, α, is proportional to the rate at which energy is absorbed

from (α > 0) or emitted into (α < 0) the probe field. Absorption corresponds to transitions

from initial dressed states I = A0, B0 to final state dressed states J = A1, B1, while emis-

sion corresponds to transitions from initial dressed states I = A0, B0 to final state dressed

states J = A2, B2. For a given transition, the contribution to the absorption coefficient is

proportional to NV ~ΩpγρJJ/|Ep|2, where N is the atom density and ρJJ is the steady state

population in state J owing to the I → J transition. The final state population ρJJ(p) is

equal to [ΛI(p)/γ] | < J |Vp|I > |2LIJ , where ΛI(p) is the pumping rate for initial dressed

state I [16], < J |Vp|I > is a matrix element for the I −J transition and LIJ is a Lorentzian

having width γ, centered at the I-J transition frequency. The transition frequencies ∆IJ(p)

may be directly read from Fig. 2(b) or obtained from Eq. (14). Consequently, it is neces-

sary to specify ΛI(p) and to calculate the transition matrix elements < J |Vp|I > in order

to arrive at an expression for the probe absorption.

In the bare state representation, the pumping matrix for the intitial state manifold is

taken to be of the form

9



Λ(p) =

 ρ̇11(p) 0

0 ρ̇22(p+~k12)


pump

=

 Λ1(p) 0

0 Λ2(p + ~k12)

 ,

which, when converted to the dressed state basis becomes

Λd(p) =

 ΛA(p) ΛAB(p)

ΛAB(p) ΛB(p)

 (

=

 Λ2(p + ~k12) cos2 [θ0(p)] + Λ1(p) sin2 [θ0(p)] 1
2

[Λ2(p + ~k12)− Λ1(p)] sin [2θ0(p)]

1
2

[Λ2(p + ~k12)− Λ1(p)] sin [2θ0(p)] Λ1(p) cos2 [θ0(p)] + Λ2(p + ~k12) sin2 [θ0(p)]

 ; (

In the secular limit, the off-diagonal pumping terms can be neglected since they give rise to

terms of order γ/ω(i)
AB(p) � 1. Moreover, for the present we will set Λ2(p + ~k12) =0 and

generalize the results to nonvanishing Λ2(p + ~k12) in the next section. Thus, we take a

pumping matrix of the form

Λd (p) =

 Λ1 (p) sin2 [θ0 (p)] 0

0 Λ1 (p) cos2 [θ0 (p)]

 .

We now turn our attention to the transition matrix element < J |Vp|I > . As an ex-

ample consider < A1|Vp|A0 >, which is the amplitude for the transition |A0 >→ |A1 >

involving probe absorption and pump 1 or pump 2 emission. This transition is illustrated

in Fig. 2(c). The probe couples only to the |1,p;n1, n2 > part of |A0 >, leading to a factor

−eiφd/2 sin [θ0(p)]. The absorption of the probe is followed by emission into pump 2 taking

the atom to the |2,p+~(k12 +kp1);n1, n2 + 1 > component of |A1 > and leading to a factor

e−iφd/2 cos [θ1(p)] or emission into pump 1 taking the atom to the the |1,p+~kp1;n1+1, n2 >

component and leading to a factor −eiφd/2 sin [θ1(p)]. The coupling strengths for these two,

two-photon transitions are G∗1 and G∗2, respectively, where

G1 =
χ∗pχ1

∆
; G2 =

χ∗pχ2

∆
. (25)

The two processes add coherently and one finds

< A1|V |A0 >= ~
{
G∗2e

iφd cos [θ1(p)]−G∗1 sin [θ1(p)]
}
{− sin [θ0(p)]} e−iΩpt.

10



Other matrix elements are calculated in a similar manner. For probe gain, pump fields 1 and

2 couple to the |1,p;n1, n2 > and |2,p+~k12;n1−1, n2+1 > components of the dressed states

in the 0 manifold, respectively, while the probe field couples to the |1,p−~kp1;n1− 1, n2 >

component of the dressed states in the 2 manifold. Explicit expressions for the matrix

elements are given in Appendix A.

Combining all transitions and summing over p, one finds an absorption coefficient pro-

portional to

α ∝ γ2

|χp|2
∑

p

∑
I={Ao,Bo}

ΛI(p)

γ

 ∑
J={A1,B1}

| < J |Vp|I > |2

[Ωp −∆IJ(p)]2 + γ2
−

∑
J={A2,B2}

| < J |Vp|I > |2

[Ωp −∆IJ(p)]2 + γ2


(26)

For a sub-recoiled cooled vapor, we can set Λ1(p) = Λ1δp,0, such that ΛA(p) = ΛAδp,0 and

ΛB(p) = ΛBδp,0, where

ΛA = Λ1 sin2 θ0; ΛB = Λ1 cos2 θ0,

θi ≡ θi(0) [and, for future reference, ∆IJ ≡ ∆IJ(0), ω(i)
AB ≡ ω(i)

AB(0), etc.] and δp,0 is a

kronecker delta. In this limit, one finds the absorption coefficient in the secular limit to be

11



(
α

α0

)
sec

=
|G|
|∆|

[(
ψη sin θ1 −

1

η
cos θ1

)2(ΛA

γ
sin2 θ0LA0A1(∆′) +

ΛB

γ
cos2 θ0LB0A1(∆′)

)
+

(
ψη cos θ1 +

1

η
sin θ1

)2(
ΛA

γ
sin2 θ0LA0B1(∆

′) +
ΛB

γ
cos2 θ0LB0B1(∆

′)

)
−
(
ψη sin θ0 −

1

η
cos θ0

)2 ΛA

γ

(
sin2 θ2LA0A2(∆′) + cos2 θ2LA0B2(∆

′)
)

−
(
ψη cos θ0 +

1

η
sin θ0

)2 ΛB

γ

(
sin2 θ2LB0A2(∆

′) + cos2 θ2LB0B2(∆
′)
)]

; (27a)

LA0A1(∆′) =
γ2(

∆′ − ω~kp1 − 1
2
(ω(0)

AB − ω
(1)
AB)
)2

+ γ2

; (27b)

LB0A1(∆′) =
γ2(

∆′ − ω~kp1 + 1
2
(ω(0)

AB + ω(1)
AB)
)2

+ γ2

; (27c)

LA0B1(∆
′) =

γ2(
∆′ − ω~kp1 − 1

2
(ω

(0)
AB + ω

(1)
AB)
)2

+ γ2

; (27d)

LB0B1(∆
′) =

γ2(
∆′ − ω~kp1 + 1

2
(ω

(0)
AB − ω

(1)
AB)
)2

+ γ2

; (27e)

LA0A2(∆′) =
γ2(

∆′ + ω~kp1 + 1
2
(ω(0)

AB − ω
(2)
AB)
)2

+ γ2

; (27f)

LA0B2(∆
′) =

γ2(
∆′ + ω~kp1 + 1

2
(ω(0)

AB + ω(2)
AB)
)2

+ γ2

; (27g)

LB0A2(∆′) =
γ2(

∆′ + ω~kp1 − 1
2
(ω(0)

AB + ω(2)
AB)
)2

+ γ2

; (27h)

LB0B2(∆
′) =

γ2(
∆′ + ω~kp1 − 1

2
(ω

(0)
AB − ω

(2)
AB)
)2

+ γ2

; (27i)

where

ψ = ∆/|∆|

is the sign of the detuning for each of the three fields,

η =
√
|χ1|/|χ2|,
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∆′ = δp1 −
~kp1 · k12

2M
,

δp1 = Ωp − Ω1; δp2 = Ωp −Ω2 − ω21,

α0 =
kpNd2

1e

2~ε0γ
,

and d1e is a bare state dipole moment matrix element for the |1〉 → |e〉 transition.

The first four resonances in
(
α
α0

)
sec

correspond to probe absorption while the last four

correspond to probe gain. The spectrum is shown in Fig. 3. The line widths of all the

resonances equal γ; consequently, the recoil induced resonances in ground state spectroscopy

are fully resolved if ωk > γ. The secular contribution does not vanish in the limit that

|δ(p = 0)/G| � 1, even though ΛA = ΛB in this limit. As long as the recoil frequency is

larger than γ and the Doppler width associated with the two-photon pump transition, the

absorption and emission contributions to the probe response do not cancel one another.

The most significant feature of
(
α
α0

)
sec

is that the line strengths involve factors such as(
ψη sin θ1 − 1

η
cos θ1

)2

which allows one to manipulate the strength of the lines by controlling

the sign of the field detuning and the ratio of the pump field amplitudes. These factors are an

indication of interference between the two ”two-photon probe” fields which can both lead to

absorption or gain in Ep. Because the two lines in the doublets have different strengths, one

can adjust ψ and η to turn off one of the lines. For example, the absorption doublet, LA0A1

and LB0B1, consists of the lines at ∆′ = ω~kp1 + 1
2
(ω(0)

AB−ω
(1)
AB) and ω~kp1− 1

2
(ω(0)

AB−ω
(1)
AB) with

strengths ∼
(
ψη sin θ1 − 1

η
cos θ1

)2

and ∼
(
ψη cos θ1 + 1

η
sin θ1

)2

, respectively. Choosing

ψ = +1 and η2 = cot θ1 turns ”off” the first line while ψ = −1 and η2 = tan θ1 turns ”off”

the second line. This is shown in Fig. 4. When |G| and δ12 are much larger than any of

the recoil terms, θ0 ≈ θ1 ≈ θ2 and the emission lines are also turned ”off”. Consequently,

by choosing ψ = +1 and η2 = cot θ1 to turn off the LA0A1 and LB0A1 absorption lines, the

LA0A2 and LA0B2 emission lines are also turned off.

A particularly interesting case occurs when k1 ≈ k2 so that ω(0)
AB = ω(1)

AB = ω(2)
AB and θ0 =

θ1 = θ2. This would correspond to a two-photon pump field which imparts no momentum
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to the atoms so that the recoil splitting in the absorption spectrum can be attributed solely

to the recoil due to the probe field acting with either of the pump fields, kp2 = kp1. In

this case, the line LA0A1 (∆′) is degenerate with LB0B1 (∆′) and LA0A2 (∆′) is degenerate

with LB0B2 (∆′) . Consequently, the spectrum consists of three absorption-emission doublets

centered at ∆′ = 0,+ω(0)
AB ,−ω

(0)
AB . Moreover, the lines within each doublet are split by 2ω~kp1

which is independent of the strength or detuning of the pump fields.

When the effects of atomic recoil are neglected by setting all recoil momenta to zero in(
α
α0

)
, one obtains the same absorption spectrum given in [14]. In the limit that G1 = 0, one

recovers a simple, recoil shifted Raman spectrum. In the limit that G2 = 0, one recovers

the central, secular components of the pump-probe spectrum associated with a single, two-

level optical transition [3]. In the limit that η � 1, while G/γ � 1 remains constant, the

absorption spectrum mirrors that for the pump-probe spectrum associated with a two-level

optical transition [3].

IV. DISCUSSION

For a subrecoil cooled vapor, pumping to state 2 at a rate Λ2 (p + ~k12) = Λ2δp+~k12,0

doubles the number of absorption and emission lines in the probe spectrum, but does not

result in any qualitatively new features. There will be an additional contribution to Eq.

(52) in which θi ≡ θi(0) is replaced by θ̄i ≡ θi(−~k12), ∆IJ by ∆̄IJ ≡ ∆IJ(−~k12), ω
i
AB

by ω̄iAB ≡ ωiAB(−~k12),ΛA by Λ2 cos2 θ̄0 and ΛB by Λ2 sin2 θ̄0. The absorption coefficient

contains sixteen lines in all. The eight new spectral components display the same properties

as the original eight but are displaced by an amount ∼ ~kp1·k12

M
. Figure 5 shows the secular

absorption spectrum with all sixteen components when Λ2 = Λ1. In the absence of recoil,

the secular absorption coefficient vanishes when Λ2 = Λ1 [14]. However, when recoil is

included, the absorption and emission contributions to the probe response do not cancel one

another when Λ2 = Λ1, provided the recoil frequency is larger than γ and the Doppler width

associated with the two-photon pump transition.
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In Ref. [14] interference effects similar to those in Eq. (27a) were found. We have shown

that the interference is independent of the field statistics and persisits even when recoil

induced resonances are resolved.

The RIR offer several possibilities for applications. The existence of a number of tunable,

well-resolved, gain peaks allows one to envision experiments in which lasing occurs at one

or more of the gain positions. These peaks could be adjusted to coincide with modes of a

ring cavity, for example. By sweeping the ratio of the two pump field intensities, one has

a mechanism for modifying the probe gain or absorption, to the point of total suppression.

The central frequency of the absorption-emission doublets can be controlled via pump field

strength and detuning. For parallel pump fields, the frequency separation of the absorption

emission doublets can be as large as 8ωk and is independent of pump field strength and

detuning. With line widths approaching 1 Hz or less, the probe spectrum can be used to

measure the recoil frequency to a precision of order 10−7; this precision can be increased if

the two-photon pump field is replaced by a pair of counterpropagating, two-photon pump

fields [17]. The narrow resonances can also be used in schemes for obtaining ”slow light”

[18].

Pump-probe spectroscopy of Bose-Einstein condensates represents an interesting appli-

cation of the ideas presented here. Bragg spectroscopy has recently been demonstrated in

condensates [9] [10] as well as the stimulated generation of matter waves in a condensate

by Rayleigh scattering [19]. Pump-probe spectroscopy using electronic excited states would

be unfeasible in condensates since there are no stable trapped condensates with electronic

states which may be populated. Currently, the only multi-component condensates consist of

two hyperfine states in 87Rb [21] and the Zeeman states in the F = 1 manifold of optically

trapped Na [22]. Consequently, pump-probe spectroscopy would necessarily involve Raman

transitions between stable ground states in the manner proposed here. The RIR spectrum

of a weakly interacting Bose condensate should yield information about the spectrum of

elementary excitations in the condensate which for small momenta have a linear dispersion

relation while, for large momenta, have a quadratic dispersion similar to that of free atoms,
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but with a shift due to the mean-field interactions in the condensate. In addition, the line-

widths of the RIR spectrum should be given by the zero point motion of the condensate in

the trapping potential provided
( ~
m∆x

)
kp1,2 > γ and ∆x is the size of the condensate. How-

ever, the direct application of the results presented here to a condensate would be erroneous

since a correct calculation of the RIR spectrum would have to account for the mean-field

interactions between the atoms. This will be pursued in future work.
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VI. APPENDIX A - MATRIX ELEMENTS OF VID

The interaction with the probe field may be expressed in terms of an effective two-photon

interaction Hamiltonian similar to that in Eq. (3d),

VI = ~
∑

p

(
χpg∗2
∆

e−iΩpt |2,p + ~kp2〉 〈1,p| a†2 +
χpg∗1
∆

e−iΩpt |1,p + ~kp1〉 〈1,p| a†1 + h.c.

)
(28)

where χp = −1
2~ de1Ep is the Rabi frequency for the probe field and de1 = < e|d·ε̂|1 > is a

dipole matrix element. The matrix representation of VI with respect to the bare state basis

has the following nonvanishing elements

〈1,p;n1, n2|VI |2,p + ~k12 + ~kp1;n1, n2 + 1〉 = ~G2e
iΩpt;

〈1,p;n1, n2|VI |1,p + ~kp1;n1 + 1, n2〉 = ~G1e
iΩpt; (29)

〈1,p−~kp1;n1 − 1, n2|VI |2,p + ~k12;n1 − 1, n2 + 1〉 = ~G2e
iΩpt;

〈1,p−~kp1;n1 − 1, n2|VI |1,p;n1, n2〉 = ~G1e
iΩpt;
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and the hermitian conjugates of Eqs. (29). In Eqs. (29), G1 and G2 are two-photon probe

Rabi frequencies defined as G1 = χ∗pχ1/∆; G2 = χ∗pχ2/∆. Note that the coupling of the 1

and 2 manifolds to manifolds other than the 0 manifold has been ignored.

The matrix VId represents the interaction with the probe field in the dressed state basis

and is defined as

VId = TVIT
†; (30)

where T is given by the block diagonal matrix

T = diag [T1(p),T0(p),T2(p)] . (31)

The Rabi frequencies χp, χ1, and χ2 may be expressed as

χp = |χp|eiφ; χ1 = |χ1|eiφ1; χ2 = |χ2|eiφ2; (32)

so that φd = φ2 − φ1 + π
2
(1− ψ) since G = |G|eiφd. The matrix elements are:

< A1|VI |A0 >= ~ei(φ−φ1)e−iΩpt sin θ0(−|G2| cos θ1 + ψ|G1| sin θ1); (33a)

< A1|VI |B0 >= ~ei(φ−φ1)e−iΩpt cos θ0(|G2| cos θ1 − ψ|G1| sin θ1); (33b)

< B1|VI |A0 >= ~ei(φ−φ1)e−iΩpt sin θ0(−ψ|G1| cos θ1 − |G2| sin θ1); (33c)

< B1|VI |B0 >= ~ei(φ−φ1)e−iΩpt cos θ0(ψ|G1| cos θ1 + |G2| sin θ1); (33d)

< A0|VI |A2 >= ~ei(φ−φ1)e−iΩpt sin θ2(−|G2| cos θ0 + ψ|G1| sin θ0); (33e)

< A0|VI |B2 >= ~ei(φ−φ1)e−iΩpt cos θ2(|G2| cos θ0 − ψ|G1| sin θ0); (33f)

< B0|VI |A2 >= ~ei(φ−φ1)e−iΩpt sin θ2(−ψ|G1| cos θ0 − |G2| sin θ0); (33g)

< B0|VI |B2 >= ~ei(φ−φ1)e−iΩpt cos θ2(ψ|G1| cos θ0 + |G2| sin θ0). (33h)

The other elements follow from the hermiticity of VId.

VII. APPENDIX B

In this Appendix the absorption coefficient for the probe field is calculated, without

making the secular approximation. The absorption coefficient, α, and index change, ∆n,
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arise from the imaginary and real parts of the macroscopic polarization in the Maxwell-Bloch

equations for the probe field. They are given by the expressions

α = α0 Im

(
γρ′1e
χ∗p

V

)
; (34a)

∆n = −α0k
−1
p Re

(
γρ′1e
χ∗p

V

)
; (34b)

α0 =
kpNd2

1e

2~ε0γ
. (34c)

where V is the volume and ρ′1e is the part of the bare state density matrix element ρ1e(R, t)

which is proportional to e−i(kp·R−Ωpt), which we denote by ρ′1e(R, t).

Before proceeding, we note that in this Appendix all summations over momentum states

have been converted to an integration over a continuum of states via the standard substi-

tution
∑

p → V
(2π~)3

∫
d3p. The coefficient ρ′1e is related to the coherence in position space,

ρ′1e(R, t), and the momentum space density matrix elements, ρ1e(p,p′; t) = ρ
′
1e(p,p

′; t)eiΩpt,

by

ρ′1e(R, t) = ρ′1ee
−i(kp·R−Ωpt) (35)

=
1

(2π~)3

∫ ∫
d3pd3p′ρ′1e(p,p

′; t)eiΩptei(p−p′)·R/~δ(p− p′ + ~kp). (36)

The coherence, ρ′1e(p,p
′; t)eiΩpt, has been written in the Schrödinger representation and is

obtained from the density matrix for the atom plus pump fields by tracing over the number

of photons in the pump fields,

ρ′1e(p,p
′; t) = e−iΩpte−iω1et

∑
n1,n2

ρI1e(p, n1, n2; p
′, n1, n2; t). (37)

where ρI1e(p, n1, n2; p′, n′1, n
′
2; t) is in the interaction representation with respect to the inter-

nal energy levels and pump fields. One cannot derive a differential equation for ρ
′
1e(p,p

′; t)

starting from the original Hamiltonian in Eq. (3a) since the excited state has been adiabat-

ically eliminated from the effective Hamiltonian. However, by reintroducing an interaction

term

Haf = ~
[
g1 |e〉 〈1| eik1·R + g2 |e〉 〈2| eik2·R + χp |e〉 〈1| ei(k1·R−Ωpt)

]
+ h.c.
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into the Hamiltonian and writing

ρ̇′1e(p,p
′; t) =

∂

∂t

(
e−iΩpte−iω1et

∑
n1,n2

ρI1e(p, n1, n2; p
′, n1, n2; t)

)
. (38)

one finds the equation of motion for ρI1e(p, n1, n2; p′, n′1, n
′
2) to be

ρ̇I1e(p, n1, n2; p′, n′1, n
′
2) = [−iωpp′ − (γ + γe)/2] ρI1e(p, n1, n2; p′, n′1, n

′
2)

−iχ∗1ei(Ω1−ωe1)t
[
ρIee(p + ~k1, n1 − 1, n2; p′, n′1, n

′
2)

−ρI11(p, n1, n2; p′ − ~k1, n
′
1 + 1, n′2)

]
−iχ∗pei(Ωp−ωe1)t

[
ρIee(p + ~kp, n1, n2; p′, n′1, n

′
2)

−ρI11(p, n1, n2; p′ − ~kp, n′1, n′2)
]

+iχ∗2e
i(Ω2+ω2e)tρI12(p, n1, n2; p′ − ~k2, n

′
1, n
′
2 + 1), (39)

where the t argument has been dropped. By carrying out the trace in Eq. (37), one obtains

terms such as,

ρI11(p; p′ − ~k1) =
∑
n1,n2

ρI11(p, n1, n2; p
′ − ~k1, n1 + 1, n2),

so that the equation of motion for ρ′1e(p; p′) has a form which is identical to that which

would have been obtained using classical pump fields,

ρ̇
′

1e(p; p′) = − [i(Ωp + ω1e + ωpp′) + (γ + γe)/2] ρ
′

1e(p; p′)

−iχ∗p
[
ρIee(p + ~kp; p′)− ρI11(p; p′ − ~kp)

]
−iχ∗1e−iδp1t

[
ρIee(p + ~k1; p′)− ρI11(p; p′ − ~k1)

]
+iχ∗2e

−iδp2tρI12(p; p′ − ~k2). (40)

In terms of the perturbation series solution

ρI11(p; p′) = ρ
(0)
11 (p; p′) + ρ+

11(p; p′)eiδp1t + ρ−11(p; p′)e−iδp1t; (41a)

ρI12(p; p′) =
[
ρ

(0)
12 (p; p′) + ρ+

12(p; p′)eiδp1t + ρ−12(p; p′)e−iδp1t
]
eiδ12t; (41b)
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where ρ(0)
jj′ (p; p′) are independent of χp and ρ±jj′(p; p′) are linear in χp, the steady state

solution for large detuning is

ρ′1e(p; p′) ≈ 1

∆

(
χ∗2ρ

+
12(p; p′ − ~k2) + χ∗1ρ

+
11(p; p′ − ~k1) + χ∗pρ

(0)
11 (p; p′ − ~kp)

)
.

(42)

By making a change of variables, p− p′ → p− p′ − ~kp in Eq. (36), one gets,

ρ′1e(R, t) =
e−i(kp·R−Ωp t)

(2π~)3∆

∫ ∫
d3pd3p′ei(p−p

′
)·R/~δ(p− p′)

×{χ∗2
(
ρ+

12(p; p′ + ~kp2) + ρ+
12(p−~kp1; p′ + ~k12)

)
+

χ∗1
(
ρ+

11(p; p′ + ~kp1) + ρ+
11(p−~kp1; p′)

)
+ χ∗pρ

(0)
11 (p; p′)} (43)

One must now obtain equations for ρI11(p; p′) and ρI12(p; p′) using the effective Hamiltonian

Htot= H + VI , solve these equations, and then extract ρ+
12(p; p′) and ρ+

11(p; p′) from these

solutions using Eqs. (41a-41b).

The terms appearing in Eq. (43) may be expressed in terms of the dressed state density

matrix elements. If one is interested only in terms linear in χp, one can expand the dressed

state density matrix to first order in χp as

ρII′ =
[
ρ

(0)
II′ + ρ+

II′e
i(Ωp−ω10)t + ρ−II′e

−i(Ωp−ω10)t
]
eiω10t; (44a)

ρJJ′ =
[
ρ

(0)
JJ′ + ρ+

JJ′e
i(Ωp+ω20)t + ρ−JJ′e

−i(Ωp+ω20)t
]
eiω20t; (44b)

where I, J = {A0, B0}, I ′ = {A1, B1}, and J ′ = {A2, B2}. The ρ+
ij(p; p′) needed in Eq.(43)

can be expressed in terms of dressed state density matrix elements using Eqs. (21,22,49) as
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ρ+
11(p; p + ~kp1) = sin θ0(p) sin θ1(p)ρ+

A0A1
− sin θ0(p) cos θ1(p)ρ+

A0B1

− cos θ0(p) sin θ1(p)ρ+
B0A1

+ cos θ0(p) cos θ1(p)ρ+
B0B1

; (45a)

ρ+
11(p−~kp1; p) = sin θ2(p) sin θ0(p)ρ+

A2A0
− sin θ2(p) cos θ0(p)ρ+

A2B0

− cos θ2(p) sin θ0(p)ρ+
B2A0

+ cos θ2(p) cos θ0(p)ρ+
B2B0

; (45b)

ρ+
12(p; p + ~kp2) = eiφd

(
− sin θ0(p) cos θ1(p)ρ+

A0A1
− sin θ0(p) sin θ1(p)ρ+

A0B1

+ cos θ0(p) cos θ1(p)ρ+
B0A1

+ cos θ0(p) sin θ1(p)ρ+
B0B1

)
; (45c)

ρ+
12(p−~kp1; p + ~k12) = eiφd

(
− sin θ2(p) cos θ0(p)ρ+

A2A0
− sin θ2(p) sin θ0(p)ρ+

A2B0

+ cos θ2(p) cos θ0(p)ρ+
B2A0

+ cos θ2(p) sin θ0(p)ρ+
B2B0

)
. (45d)

The state vector in the Schrödinger representation may be expanded in terms of the

dressed states for the 0, 1, and 2 manifolds,

|Ψ >= csA0
(p)|A0 > +csB0

(p)|B0 > +csA1
(p)|A1 > +csB1

(p)|B1 > +csA2
(p)|A2 > +csB2

(p)|B2 > .

In the following, the momentum labels are suppressed. The Schrödinger equation for the

dressed state amplitudes is then given by

i~ċ = (Ho + VId) c (46)

where

Ho = diag(E
(1)
A , E

(1)
B , E

(0)
A , E

(0)
B , E

(2)
A , E

(2)
B ) (47)

and matrix elements of VId are given in Eqs. (33a-33h).

Using Eq. (46) along with the ground state decay rate γ and incoherent pumping to the

0 manifold, one finds that density matrix elements for the six dressed states in the three

manifolds (0), (1), (2), evolve as(
d

dt
+ γ

)
ρd =

1

i~
[Ho + VId, ρd] + ΛD; (48)
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where

ρd(p,p
′) = c(p)c†(p′) =



ρA1A1 ρA1B1 ρA1A0 ρA1Bo ρA1A2 ρA1B2

ρB1A1 ρB1B1 ρB1A0 ρB1Bo ρB1A2 ρB1B2

ρA0A1 ρA0B1 ρA0A0 ρA0Bo ρA0A2 ρA0B2

ρB0A1 ρB0B1 ρB0A0 ρB0Bo ρB0A2 ρB0B2

ρA2A1 ρA2B1 ρA2A0 ρA2Bo ρA2A2 ρA2B2

ρB2A1 ρB2B1 ρB2A0 ρB2Bo ρB2A2 ρB2B2


(49)

and the pumping matrix, Λd, has the block diagonal form

ΛD = diag(0,Λd(p,p
′),0), (50)

where Λd(p) has the basic structure given in Eq. (24), modified to allow for p,p′ coher-

ence. In particular, the off diagonal elements of Λd(p,p′) that give rise to the nonsecular

contribution to the line shape are of the form

ΛAB(p,p′+~k12) =Λ2(p+~k12,p
′+~k12) cos [θ0(p)] sin [θ0(p′)]−Λ1(p,p

′) sin [θ0(p)] cos [θ0(p
′)] .

The general form of the solution is linked to the incoherent pumping of levels 1 and

2. For a subrecoil cooled vapor, the pumping rate density for bare state density matrix

elements ρij(p; p′) is assumed to be

Λij(p,p
′) = ΛiV

−1(2π~)3δ(p)δ(p− p′)δij (51)

where ΛiV −1 has the dimensions of (volume×time)−1 and can be interpreted as the pumping

rate to state 1 or 2 in position space. With this form of pumping, ρIij(p; p′), must be

proportional to δ(p − p′ − ~k′) where k′ is some algebraic combination of the pump and

probe field propagation vectors. To obtain ρ′1e from Eq. (43), one must keep only those

terms in the integrand of Eq. (43) proportional to δ (p− p′) . The ρ(0)
11 (p; p) term in Eq.

(43) makes no contribution to the absorption since it is real and will be ignored from this

point on.
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The incoherent pumping of states 1 and 2 populate two different manifolds. The pumping

of state 1 populates the (p = 0, n1, n2) manifold while the pumping of state 2 populates the

(p = −~k12, n1, n2) manifold since this manifold involves state 2 with zero momentum. Thus

in viewing absorption or emission, two distinct initial state manifolds must be included,

leading to the possibility of sixteen rather than eight components of the spectrum. Here we

set Λ2 = 0.

Substituting Eqs. (45a-45d) into Eq. (43) and using the steady state solutions for ρ+
II′

and ρ+
JJ′ obtained from Eqs. (44a-44b) and Eq. (48), one finds, after some manipulation,

the final expression for the absorption coefficient,(
α

α0

)
=

(
α

α0

)
sec

+

(
α

α0

)
ns

;(
α

α0

)
ns

=
|G|
|∆|

ΛAB

γ

sin 2θ0

2
(

(ω
(0)
AB)2 + γ2

) [−(ψη sin θ1 −
1

η
cos θ1

)2

(ΓA0A1(∆′) + ΓB0A1(∆
′))

−
(
ψη cos θ1 +

1

η
sin θ1

)2

(ΓA0B1(∆
′) + ΓB0B1(∆

′))

+
(
η2 − η−2 − 2ψ cot 2θ0

) (
sin2 θ2 (ΓA0A2(∆′) + ΓB0A2(∆′)) + cos2 θ2 (ΓA0B2(∆

′) + ΓB0B2(∆
′))
)

ΓA0A1(∆
′) =

[(
∆′ − ω~kp1 −

1

2
(ω(0)

AB − ω
(1)
AB)

)
ω(0)
AB + γ2

]
LA0A1(∆′);

ΓB0A1(∆
′) =

[
−
(

∆′ − ω~kp1 +
1

2
(ω(0)

AB + ω(1)
AB)

)
ω(0)
AB + γ2

]
LB0A1(∆′);

ΓA0B1(∆
′) =

[(
∆′ − ω~kp1 −

1

2
(ω(0)

AB + ω(1)
AB)

)
ω(0)
AB + γ2

]
LA0B1(∆

′);

ΓB0B1(∆
′) =

[
−
(

∆′ − ω~kp1 +
1

2
(ω

(0)
AB − ω

(1)
AB)

)
ω

(0)
AB + γ2

]
LB0B1(∆

′);

ΓA0A2(∆
′) =

[
−
(

∆′ + ω~kp1 +
1

2
(ω

(0)
AB − ω

(2)
AB)

)
ω

(0)
AB + γ2

]
LA0A2(∆′);

ΓB0A2(∆
′) =

[(
∆′ + ω~kp1 −

1

2
(ω

(0)
AB + ω

(2)
AB)

)
ω

(0)
AB + γ2

]
LB0A2(∆′);

ΓA0B2(∆
′) =

[
−
(

∆′ + ω~kp1 +
1

2
(ω(0)

AB + ω(2)
AB)

)
ω(0)
AB + γ2

]
LA0B2(∆

′);

ΓB0B2(∆
′) =

[(
∆′ + ω~kp1 −

1

2
(ω(0)

AB − ω
(2)
AB)

)
ω(0)
AB + γ2

]
LB0B2(∆

′);

where ΛAB = −1
2
Λ1 sin (2θ0) and

(
α
α0

)
sec

is given by Eq. (27a). The reason the absorption

coefficient is expressible as a sum of the secular term plus a non-secular term is linked
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to the fact that the secular approximation consists solely of neglecting the off-diagonal

components of Λd. Since the first order solutions, ρ+
II′ and ρ+

JJ′ , are linear in the pumping

terms,
(
α
α0

)
sec

contain terms proportional to ΛA and ΛB while
(
α
α0

)
ns

is proportional to

ΛAB . This simplification would not occur for a more complex decay scheme for states |1 >

and |2 > since the decay would couple density matrix elements in a field dependent manner

(see [23]).

The nonsecular term,
(
α
α0

)
ns

, consist of dispersion-like structures centered at the same

locations as the resonances in
(
α
α0

)
sec
. In the secular limit,

(
α
α0

)
ns
�
(
α
α0

)
sec

and
(
α
α0

)
ns

can usually be ignored. Notice that if one chooses ψ and η such that a pair of absorption

lines in
(
α
α0

)
sec

vanish, then the corresponding terms in
(
α
α0

)
ns

also vanish so that
(
α
α0

)
is

identically zero. However, this will not be true for the gain terms in
(
α
α0

)
sec

since the cor-

responding terms in
(
α
α0

)
ns

have a different interference coefficient, (η2 − η−2 − 2ψ cot 2θ0).

Figure 6 shows a plot of the non-secular absorption coefficient for the same parameters as

Fig. 3. In this plot, the non-secular terms are ∼ 1000 times smaller than the secular terms.
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Figure 1. Schematic diagram of atom-field system.

Figure 2. (a) Transitions between the 0 manifold and the 1 and 2 manifolds leading to

probe gain or absorption in the bare state picture. The states in the 1 and 2 manifolds

are displaced from the states in the 0 manifold by an amount ∼ ~Ω1. The Rabi frequencies

shown are those which couple the states from the 0 manifold to the 1 and 2 manifolds. (b)

Energy levels in the dressed state basis. The center of the 1 manifold has an energy ~ω10

above the center of the 0 manifold and similarly, the center of the 2 manifold is ~ω20 below

the 0 manifold.(c) Illustration of the coupling of the pump and probe fields to the dressed

states for the |A0 >→ |A1 > transition. The Rabi frequencies shown are those that couple

the bare state |1 > component of |A0 > to the bare state components of |A1 >.

Figure 3. Plot of
(
α
α0

)
sec

for Λ2 = 0, Λ1/γ = 1, ψ = −1 and η = 2 showing all eight

absorption and emission lines. The detuning is δ12/γ = 300 and the two-photon pump

Rabi frequency is |G|/γ = 250. The recoil energies are ω~k12/γ = 40, ω~kp1/γ = 60, and

~kp1 · k12/Mγ = 80. Note that γ � γe where γe is the excited state decay rate.

Figure 4. Plot of
(
α
α0

)
sec

showing destructive interference. Parameters are the same as

Fig. 4 except for ψ and η. The solid line corresponds to ψ = −1 and η =
√

tan θ1 = 0.8383

while the dotted line corresponds to ψ = +1 and η =
√

cot θ1 = 1.1928.

Figure 5. Plot showing sixteen lines in the
(
α
α0

)
sec

probe spectrum for Λ2/γ = Λ1/γ = 1,

ψ = +1 and η = 0.1. The detuning is δ12/γ = 500 and the two-photon pump Rabi frequency

is |G|/γ = 750. The recoil energies are ω~k12/γ = 50, ω~kp1/γ = 75, and ~kp1·k12/Mγ = −50.

Figure 6. Plot of
(
α
α0

)
ns

for the same parameters as Fig. (3). The non-secular absorption

coefficient has dispersionlike structures at the same location is the line centers of
(
α
α0

)
sec
.

The amplitudes of these non-secular terms is typically∼ 1000 times smaller than the secular

line strengths, consistent with γ/ω
(0)
AB = 0.00177.
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